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Recent advances are presented in the models for thermal oxidation that have been
been introduced by Rao and co-workers. The level-set formulation for movement of
the Si–SiO2 interface has been improved by the application of an efficient velocity–
projection scheme for noninterface points. A penalty formulation has been introduced
to enforce positive concentrations in the presence of discontinuities. The annealing-
induced expansion of SiO2 has been established as an important effect and a phe-
nomenological relation has been identified for it. Inelastic volumetric strains have
been proposed, evolution equations have been specified, and the underlying thermo-
dynamics has been elucidated. The enhanced strain finite-element method has been
applied to the inhomogeneous expansion of interface elements that have silicon and
SiO2 parts to them. c© 2001 Elsevier Science
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1. INTRODUCTION

The recent work of Rao and Hughes [1] and Raoet al.[2] treated the problem of thermal
oxidation of silicon in the framework of continuum balance laws and finite strain mechan-
ics. Advanced finite-element formulations were also applied. This paper presents recent
advances made on the above work. This introductory section is organized into passages that
outline earlier models, the work of Rao and co-workers, and areas for possible advances
over their models.

Thermal oxidation of silicon involves the following phenomena: (i) diffusion of oxi-
dant through preexisting SiO2, (ii) the oxidation reaction at the Si–SiO2 interface, and
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(iii) expansion associated with the large difference in molar volumes between Si and SiO2.
The diffusivity and reaction constants are stress-dependent. The stress arises from the ex-
pansion and depends on diffusion and reaction through the moving Si–SiO2 interface and
its delienation of Si and SiO2 subdomains.

A Fickian model is employed for diffusion. Conventionally, the diffusing oxidant (O2 or
H2O) was assumed to react fully at the interface, thus resulting in a discontinuity in oxidant
concentration. Traditional approaches to the problem have involved the specification of a
finite-element mesh, where element edges are aligned with the interface. Diffusion is solved
for only over the SiO2 subdomain and the movement of the interface is accomplished by
movement of nodes (see Rafferty [3], Penget al. [4], Senezet al. [5], Uchidaet al. [6],
Cea and co-workers [7, 8] and references therein). This approach has the undesirable con-
sequence of requiring remeshing with every time step as the interface moves. Depending
on the interface topology, it can lead to poor mesh quality. To remedy these drawbacks Rao
et al.[2] have adopted the level-set formulation of Sethian and co-workers (see Sethian [9],
Sethian and Adalsteinsson [10]) that uses a mathematical description of the interface and
a partial differential equation for its motion. The interface velocity is derived from funda-
mental mass balance considerations (see Rao and Hughes [1]). The diffusion equation is
solved over the silicon and SiO2 subdomains, thus circumventing the limiting assumption of
complete reaction of O2 at the interface. Instead, the concentration segregation condition—
which specifies the oxidant concentration on either side of the interface—is invoked and
enforces a discontinuity in oxidant concentration at the interface. The level-set solution
indicates the position of the interface which is allowed to lie within an element. This leads
to a discontinuity in oxidant concentration within an element. A finite-element scheme
based upon the method of incompatible modes is used to construct discontinuous local in-
terpolations for oxidant concentration. With these formulations, the position and evolution
of the interface is not dictated by the underlying spatial discretization, and remeshing is
entirely eliminated as the interface evolves. Additionally, discontinuous concentrations are
recovered, respecting the segregation condition.

Traditionally the mechanics accompanying thermal oxidation of silicon has been mod-
eled under the infinitesimal strain approximation. Recognizing the tendency for SiO2 to
flow at temperatures exceeding approximately 750◦C, material models involving various
combinations of elasticity and viscosity have been used. Early work included the constant
viscosity model of Chin [11], the linear Maxwell-viscoelastic model of Hsueh and Evans
[12], and the “incrementally” linear elastic model of Needset al. [13]. Later, Rafferty [3]
replaced the constant viscosity with a stress-dependent, Eyring-viscosity model, which has
subsequently been used by Hu [14], Faheyet al.[15], Uchidaet al.[6], and Senezet al.[5].
More recently, Navi and Dunham [16] modeled the oxide as a viscous, compressible fluid,
and Yuet al.[17] employed a viscosity varying linearly in time with a Maxwell-viscoelastic
model.

The observation that an intrinsic stress is created by thermal oxidation was made by
EerNisse [18]. Among the mechanisms of stress-generation that have been suggested are
those based on shear strain by Pilling and Bedworth [19] and Vermilyea’s [20] extension of
Mott’s notion of “kink-sites.” According to this last-mentioned model, the expansion associ-
ated with oxidation is purely one-dimensional, in a direction perpendicular to the interface.

Wide-ranging objections can be raised to the above models of the mechanics of thermal
oxidation of silicon. (i) The expansion associated with oxidation is finite. In fact, the molar
volume of SiO2 in a stress-free state is 2.2 times that of silicon, rendering the infinitesimal
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strain approximation invalid. (ii) The rate-dependent material models mentioned above for
SiO2 are viscous or, at best, Maxwell-viscoelastic and thus model fluidlike behavior. In the
absence of flow, the stress in these models vanishes. This contradicts experimental observa-
tions such as those of EerNisse [18] and, more recently, Yuet al.[17], where a nonvanishing
stress is measurable even in the absence of oxide flow. Solidlike behavior must therefore
be incorporated [i.e., the stress must depend on the deformation in addition (possibly) to
the rate of deformation]. The experiments of Yuet al. [17] also indicate that the viscosity
and moduli of SiO2 decrease at higher temperatures and fluidlike behavior is approached.
Therefore there is a need for material models that span the range between solid and fluid-
like behavior. These models must demonstrate temperature-dependent material properties.
(iii) The one-dimensional model of oxide-expansion is fundamentally incapable of repro-
ducing the results of water curvature experiments. In the experiments of EerNisse [18] and
Yu et al.[21], thin films of SiO2 were thermally grown on silicon substrates. The associated
expansion forces the wafer to bend away from the film surface. Such a phenomenon is re-
producible only if lateral expansion of the film is accounted for. The calculations are based
on simple principles of Euler–Bernoulli bending and underlie the widely used Stoney’s for-
mula (see Stoney [22]). These observations indicate that proper modeling of the kinematics
associated with oxidation must account for three-dimensional oxide expansion. (iv) The
actual expansion of newly formed SiO2 is represented by enforcing the movement of the
corresponding nodes in the finite-element mesh. There is no representation of the expansion
at the constitutive level.

In the work of Rao and Hughes [1] the nonlinear finite strain theory provides the underly-
ing description of mechanics. Thus the large expansion ratios associated with oxidation are
treated accurately. A standard solid viscoelastic model (see Simo and Hughes [23]) has been
adopted for SiO2. This allows representation of the entire range of material behavior from
viscous fluid, to Maxwell-viscoelastic fluid, to viscoelastic solid by appropriate choice of pa-
rameters (see Garikipatiet al.[24] for details). The full three-dimensional expansion of SiO2

is modeled. Thus, wafer curvature during thermal oxidation is reproduced. Additionally, the
expansion is modeled via the constitutive equations and not ad hoc movement of mesh nodes.

The course of development of the above work pointed out several aspects where advances
were either possible or needed. Attention is turned to them in the present paper. Among these
are the following. (i) The evolution of the level set that describes the interface is governed
by a partial differential equation, which is defined throughout the domain. However mass-
balance considerations provide a Rankine–Hugoniot–type relation for interface velocity that
holds only at the interface. The level-set velocity at points not lying on the interface must be
determined through other means. (ii) The discontinuity-resolving interpolations employed
for solution of the diffusion equation have been observed to lead to negative concentrations in
certain situations. This is clearly nonphysical, and numerical schemes that preserve positive
concentrations are needed. (iii) The oxide displays a density relaxation when annealed at
high temperatures. This can also be modeled as an expansion in addition to that associated
with oxidation. (iv) The expansion of SiO2, while modeled at the constitutive level, left
unaddressed the nature of the strains associated with expansion, a complete statement of the
thermodynamics of these expansions, and the derivation of the stress–strain relations from
the second law. (v) Unsatisfactory numerical performance was observed in certain instances
in the solution of the mechanics. This has been related to the highly inhomogeneous nature of
the hydrostatic component of the constitutive relationship in elements that consist of silicon
and SiO2 parts. The element-level kinematics in Raoet al. [2] is incapable of representing
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the associated discontinuous strains. Finite-element methods that remedy this difficulty by
allowing discontinuous strains at the element-level are thus indicated.

The organization of the remaining sections of this paper is as follows. Section 2 out-
lines the level-set formulation and discusses improvements to velocity calculations for this
purpose. Section 3 provides a treatment of the mechanics, paying particular attention to a
phenomenological model for annealing-induced expansion of SiO2 and to a reformulation
of expansion in terms of inelasticity and thermodynamics. Recently developed numeri-
cal methods for level-set evolution, diffusion-reaction, and inhomogeneous expansion are
described in Section 4. Section 5 contains numerical examples demonstrating the new nu-
merical methods, and Section 6 makes closing remarks.

2. LEVEL-SET FORMULATION FOR A MOVING INTERFACE

We begin with an overview of the level-set method applied to evolution of a bimaterial
interface.

2.1. Overview

Consider a bodyÄ, open inRndim (ndim = 2, 3 are the cases of interest) and a sur-
face0 ⊂ Ä, where0 is anndim− 1-dimensional manifold. It is assumed that0 separates
Ä into disjoint subsetsÄ− andÄ+, open inÄ such that0 ∩Ä− = ∅, 0 ∩Ä+ = ∅, and
Ä = Ä− ∪ 0 ∪Ä+ (Fig. 1). A parametrization of0 as a level set of anndim+ 1-dimensional
hypersurface is introduced via the functionφ(x, t), where,x ∈ Rndim is the position vector
of a material point andt represents time. Thendim+ 1-dimensional hypersurface is param-
eterized by(φ, x) ∈ R× Rndim. Without loss of generality0 is defined as the zero level-set
of φ, or

0t := {x ∈ Ä |φt (x) = 0} ∀ t ≥ 0. (1)

The above description is made more precise by specifyingφt (x) to be the signed distance
function

φt (x) :=


min
y∈0t

‖x− y‖: x ∈ Ä−t
−min

y∈0t

‖x− y‖: x ∈ Ä+t ,
0: x ∈ Ät

(2)

FIG. 1. A bodyÄ = Ä− ∪ 0 ∪Ä+ with interface0.
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where‖ · ‖ denotes the Euclidean norm. In this setting, the evolution of level-set contours
is governed by the partial differential equation

∂φ

∂t
+∇φ · v= 0, (3)

wherev is the velocity of the contour. Writing the velocity as

v= vMm+ vNn, (4)

wherem andn are, respectively, the unit tangent and unit normal to the contourφt (x) = c
(constant) andvM andvN are the corresponding components ofv, and usingn = ∇φ/‖∇φ‖,
it follows that (3) can be written as

∂φ

∂t
+ vN‖∇φ‖ = 0. (5)

The partial differential equation in (5) is a nonlinear advection equation.
The setting of reacting species was applied in Rao and Hughes [1] to the oxidation

reaction

Si+O2 ⇀↽ SiO2, (6)

with the surface0 representing a bimaterial interface at which the reactions take place. It
was shown that the magnitude of the normal velocity is

vN |0 = − vTox · nb0
vρoxb0

, (7)

with Tox denoting the flux of SiO2 molecules into the Si substrate,n being the normal to0
directed into the Si region, andρox representing the concentration of SiO2 at the interface.
The symbol [[d]] is used to indicate a jump in the corresponding quantity: [[d]] = (d)+ − (d)−.
Under suitable assumptions, (7) can be cast in the form

vN |0 = ksρi

N1
, (8)

whereN1 is a constant representing the concentration of SiO2 in Ä−, ρi denotes concen-
tration of O2 at the interface, andks is a reaction constant for (6) defined by the relation

Tox = ksρi at 0. (9)

The quantityρi can be calculated by solving the problem for diffusion of O2 throughÄ
coupled with the chemical reaction (6) at0 (see Rao and Hughes [1]). In the present setting,
the weak form of the diffusion problem is as follows.

Find ρ ∈ S = {ρ ∈ L2(Ä) | ρ = ρg on∂Äρ} (10)

and T= − D∇ρ inÄ \0, (11)

such that
∫
Ä\0
∇w · T dV −

∫
0

w[[T · n]] ds= −
∫
Ä

w f dV +
∫
∂Äh

wh̄ ds, (12)
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wherew is the weighting function corresponding toρ, f is a distributed source,ρg is the
specified concentration on the boundary subset∂Äρ , h̄ is the specified normal component of
oxidant flux on the boundary subset∂Äh, and∂Ä = ∂Äρ ∪ ∂Äh. The diffusivity D and the
reaction constantks introduced above are, in general, stress-dependent. This dependence
is discussed below. The conditions involving flux and concentration discontinuities at0

provide the necessary coupling of the reaction with diffusion (see Rao and Hughes [1] for
details).

2.2. Velocity Projection for the Level-Set Method

It is important to note that (7) and (8) hold forvN only at the interface0t . They do not
provide a formula applicable throughoutÄ. At pointsx /∈ 0t , v

N must be evaluated by other
means.

The velocity extension method applied to the present problem is based upon the definition
ofφt (x)as a distance function. The following elementary observation can be made. Consider
a pointx0 that lies on the interface0t0 at timet0 [i.e.,φt0(x0)= 0]. Let the normal velocity
of 0t0 bevNn at x0. It follows that the level-set contourφt0(y) = c (constant) also moves
with normal velocityvNn for any pointy such that the normal projection ofy onto0t0 is x0.

This property is used to exactly project the level-set velocity field to any point not lying
on0. Section 4 discusses algorithms for this projection. The reader is directed to the work
of Sethian and co-workers [9, 10, 25] and references therein for a comprehensive treatment
of level-set methods, including velocity projection techniques.

3. MECHANICS OF THE THERMAL OXIDATION OF SILICON

This section begins with an overview of the setting for the mechanics of thermal oxidation
(see the original work of Rao and Hughes [1] for details).

3.1. Overview

The finite strain formulation is adopted specifically to provide a proper treatment of the
large expansion of thermally grown SiO2.

Consider the body,Ä, open inR3 with material pointsX ∈ R3 in a reference cartesian
frame. The boundary ofÄ is denoted∂Ä. Consider a one-parameter set of current config-
urationsϕt (Ä) representing the deformation ofÄ. Under the point-to-point map,ϕt (X),
material points are carried from the reference to current placement:X 7→ ϕt (X). One writes

x(t) = X + u(X, t), ϕ(X, t) ≡ x(t), (13)

whereu ∈ R3 is the displacement vector. The deformation gradient tensor,F ∈ GL(3) (the
space of 3× 3 matrices), is introduced,

Ft = ∂ϕt

∂X
, (14a)

= 1+ ∂ut

∂X
, (14b)

and is positive definite; accordingly, its determinantJ = det[F] remains positive. This
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FIG. 2. Schematic representation of the standard solid viscoelastic model for the one-dimensional case.

condition is the local impenetrability of matter. In (14b),1 is the second-order identity
tensor. The kinematics are described in the reference configuration via the right Cauchy–
Green tensor,C= FTF, whereC ∈ S(3) (the space of symmetric 3× 3 matrices). At the
outset, the following volumetric/deviatoric decomposition is adopted following Simoet al.
[26]:

F = J1/3F̄. (15)

Clearly,F̄ is volume-preserving. Corresponding tōF we defineC̄ := J−2/3C.
The constitutive model is introduced next. The standard solid model of viscoelastic-

ity [27] is adopted for the oxide. A schematic representation of the model in terms of
springs and viscous dashpots in the one-dimensional, infinitesimal strain case appears
in Fig. 2. This model also makes an appearance in the literature under the name the
“Poynting–Thomson Model” [28]. The compressible Neo–Hookean-stored energy func-
tion (see Ciarlet [29]) is modified to incorporate the standard solid viscoelastic model as
follows:

ψ(J, C̄,Q) = 1

2
κ(log[J])2+ 1

2
µ[C̄ : 1− 3]− 1

2
Q : (C̄− 1)+ ψI (Q). (16)

In the above function,Q is a stresslike variable that models the viscoelastic response through
the equations

Q̇+ 1

τ
Q = γ

τ
DEV

[
2
∂W̄◦

∂(C̄)

]
,

(17)
lim

t→−∞Q = 0,

where the parameterγ is a nondimensional modulus,τ is a relaxation time, DEV[(d)] is
the deviatoric operator for contravariant tensors in the reference configuration,

DEV[(d)] := (d)− 1

3
[(d) : C]C−1, (18)

and the stored energy function has been decoupled to write

W̄◦(C̄) = 1

2
µ[C̄ : 1− 3]− 1

2
Q : (C̄− 1)+ ψI (Q). (19)
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Equations (17) can be solved to provide a convolution integral forQ:

Q(t) = γ

τ

t∫
−∞

exp[−(t − s)/τ ] DEV

{
2
∂W̄◦(C̄(s))

∂C̄

}
ds. (20)

The functionψI (Q), at equilibrium, is written as

ψI (Q) = −γ 1

2
µ[C̄ : 1− 3]+ 1

2
Q : (C̄− 1) (21)

and provides the proper conditions at thermodynamic equilibrium. The symbolsκ and
µ are, respectively, the bulk and shear moduli. Details are provided in [23]. The second
Piola–Kirchhoff stress is now calculated as

S= 2
∂ψ

∂C
, (22)

which is related to the Cauchy stress,σ, by S= F−1JσF−T and to the nominal stress,P,
by P= FS.

An important feature of the present viscoelastic model is that the viscoelastic, stresslike
variableQ, is driven by the deviatoric component of the stress, as is apparent in (17).
Conversely, only the deviatoric stress demonstrates viscoelastic relaxation. This can be
seen by applying (22) to (16) and using (18)–(21).

The law of mechanical equilibrium for the quasistatic case is written as

DIV[ P] + f = 0, (23)

wheref denotes the body force. Boundary conditions are specified as

u|∂Äu = g, PFTn|∂Ät = t̄, (24)

where∂Äu and∂Ät are, respectively, those subsets of∂Ä with displacement and traction
boundary conditions specified.

3.2. Inelastic Volume Change

The thermal oxidation of silicon involves a local volume change of 120% arising from the
large difference in unconstrained molar volumes of Si and SiO2. In this work, the expansion
is assumed to occur instantaneously when a Si atom is oxidized. Experiments by Irene
et al. [30] have revealed that when SiO2 is annealed at temperatures above 650◦C, the
density undergoes a gradual relaxation. It is of importance that both the volume changes
mentioned here are independent of the prevailing state of stress. Other processes drive them:
in the first case, oxidation, and in the second, a structural change activated by temperature.
The chemical reaction of oxidation in (6) is sufficiently exothermic to be regarded as
irreversible. The energy of reaction is approximately−700 kJ per mol at a typical oxidation
temperature of 1000◦C (see De Hoff [31], pp. 326–327), almost double that for the oxidation
2H2+O2 ⇀↽ 2H2O. The corresponding volume change will be treated as irreversible. The
density of SiO2 that has been annealed at higher temperatures is not found to increase
again on lowering the temperature below 650◦C. This volume change, too, can be treated as
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irreversible. The total expansion,2, is represented as a composition of2i
ox (for oxidation)

and2i
a (for annealing).

2i = 2i
ox2

i
a. (25)

The inelastic volume expansion ratios2i
ox and2i

a are viewed as internal variables and
evolution laws can be specified for them. For the component associated with the oxidation
reaction, one has

2i
ox(t) = 1+ 1.2H(t − tox), (26)

whereH(t − tox) is the Heaviside function defined as

H(t − tox) =
{

0 : t − tox < 0
tox > 0.

1 : t − tox ≥ 0
(27)

An evolution equation for the annealing-related component can be obtained from
the work of Taniguchiet al. [32]. The resulting expression, phenomenologically based,
is

2i
a(t) =

(n0− 1)α

(n∞ − 1+ (n0− n∞) exp[−(t/τ)a])α
, (28a)

τ̄ (T) = τ̄0 exp(EA/kT), (28b)

τ̄0 = 1.26× 10−21 s, (28c)

EA = 6 eV, (28d)

wheren is the refractive index,k is the Boltzmann constant,T represents temperature in
Kelvin, and subscripts(·)0 and(·)∞ refer to initial and final values of the corresponding
quantities. Suitable values of the exponents areα = 0.17 anda = 1.63.

Having delineated the inelastic volume change, it follows that the elastic volume change
ratio is simply

2e = J/2i . (29)

Accordingly, a further modification of the stored energy function (16) is required to arrive
at a constitutive model incorporating the inelastic volume change ratio. The stored energy
function is rewritten as

ψ̄(2e, C̄,Q) = 1

2
(κ log[2e])2+ 1

2
µ[C̄ : 1− 1]− 1

2
[Q : (C̄− 1)] + ψI (Q), (30)

consistent with the notion that only elastic volumetric deformations contribute to the stored
energy. Recourse can now be taken to a classical approach, namely, Coleman and Noll’s
argument (see Truesdell and Noll [33]), to arrive at the constitutive law for stress. The
process makes crucial use of the Clausius–Planck inequality,

D = 1

2
S: Ċ− d

dt
ψ̄(2e, C̄,Q) ≥ 0, (31)



MODELS FOR THERMAL OXIDATION OF SILICON 147

whereD denotes the rate of dissipation of energy and the first term on the right-hand
side is the stress power. Using the decompositionC= 2e2/3

2i2/3C̄ gives [see (15) and
(29)]

S:
1

2

[
2

3
C
2̇e

2e
+ 2

3
C
2̇i

2i
+2e

2
3
2i

2
3 ˙̄C
]
− ∂ψ̄

∂2e
2̇e− ∂ψ̄

∂C̄
: ˙̄C− ∂ψ̄

∂Q
: Q̇≥ 0. (32)

Observe thaṫ̄C= (∂C̄/∂C) : Ċ from the chain rule. Then, using

∂C̄
∂C
= J−2/3

[
I− 1

3
C⊗ C−1

]
(33)

in (32) yields

{
S:

[
1

3
C

1

2e

]
− ∂ψ̄

∂2e

}
2̇e

+
{

S
1

2

[
I− 1

3
C⊗ C−1

]
− ∂ψ̄
∂C̄

: J−2/3

[
I− 1

3
C⊗ C−1

]}
: Ċ

+ 1

3
S: C

2̇i

2i
− ∂ψ̄
∂Q

: Q̇≥ 0. (34)

We point out that the derivative in (33) gives rise to the deviatoric projection operator (18) for
contravariant tensors in the reference configuration. Using (18) and observing that relation
(34) must hold for all possible processes, the argument put forward by Coleman and Noll
(see [33]) yields the desired results,

1

3
S: C = 2e ∂ψ̄

∂2e
, (35)

DEV[S] = 2J−2/3DEV

[
∂ψ̄

∂C̄

]
, (36)

and the dissipation rate is nonnegative and given by

1

3
S: C

2̇i

2i
− ∂ψ̄
∂Q

: Q̇≥ 0. (37)

In the present setting,S: C is the trace of the second Piola–Kirchhoff stress tensor.
Accordingly, (35) and (36) provide constitutive equations for the pressure, defined aspS :=
1
3S: C, and deviatoric stress, DEV[S], respectively. Furthermore, (37) demonstrates that the
inelastic volume change ratio,2i , is dissipation-conjugate to the pressure,pS, as might be
expected.

Remark 3.1. In keeping with the notion of inelastic deformation, a configuration in
which the jacobian is given byJ = 2i represents a pressure-free state, unloaded elastically
by2e−1

.
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3.3. Stress Dependence of Diffusivity and Reaction Constant

The notions of stress-dependent diffusivity and reaction constants were introduced in
Section 2.1. The specific forms adopted for the dependencies are discussed here. The dif-
fusivity and reaction constant are written as

D= D0 exp

(
pVd

kT

)
, ks= ks0 exp

(
pVr

kT

)
, (38)

where D0 and ks0 are the stress-free diffusivity and reaction constant, respectively,Vd

and Vr are the activation volumes corresponding to diffusion and reaction, respectively,
k is Boltzmann’s constant, andT is temperature in Kelvin, as before. The pressure isp,
defined in terms of the trace of the Cauchy stress tensor,p = 1/3(σ : 1), and is negative in
compression.

The stress-dependence ofD used here is identical with that proposed in earlier studies
on this subject—see Rafferty and co-workers [34], Uchidaet al. [6], Senezet al. [5],
and Navi and Dunham [16]. In contrast to these studies, in the present work, the reaction
constant is enhanced or depressed by the pressure,p, rather than the normal stress,n · σn (n
being normal to the Si-SiO2 interface.0). The justification for this difference follows.
Earlier investigations treated the oxide expansion as one-dimensional and modeled it as
the movement of the interface normal to itself. The stress opposing this expansion is the
(compressive) normal stress,n · σn. The extra work to be performed to overcome the
energy barrier to reaction isn · σnVr . An Arrhenius law dependence is assumed, leading
to the formulaks = ks0 exp(n · σnVr /kT). In contrast, the present study models isotropic
expansion of the oxide (see Section 3.2). The stress component that is work-conjugate
to volumetric strain is the pressure. Following a line of reasoning identical to that just
advanced, the work to be performed in overcoming the energy barrier to reaction ispVr .
Hence, it is this factor, modifying the activation energy, that enhances or depresses the
reaction constant.

4. NUMERICAL METHODS

The two preceding sections detailed advances in the mathematical and mechanics formu-
lations. The material in this section focuses on numerical methods. The problem of thermal
oxidation of silicon as formulated in this work involves the coupled solution of (i) diffusion-
reaction, (ii) level-set evolution, and (iii) mechanics. This section begins with a treatment
of advances in numerical methods employed for these distinct problems. The methods are
then unified in a staggered solution scheme whose description appears in Section 4.4.

4.1. Numerical Implementation of the Diffusion-Reaction Problem

The weak form of the diffusion-reaction problem is given by (12). At the interface,0, the
oxidant concentration,ρ, and flux,T, can be discontinuous. In the present approach the level-
set method is used, by which an interface is allowed to pass through an element. Knowledge
of the values of the level-set function (see Section 4.2) enables precise specification of the
interface on whichρh, the finite-dimensional approximation toρ, is discontinuous. Raoet al.
[2] adopt an incompatible modes approach wherein the finite-dimensional concentration
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FIG. 3. Incompatible mode interpolation in one dimension.

field is given within an element,e, as

ρh
e =

nel∑
A=1

N AqA

︸ ︷︷ ︸
standard interpolations

+ Ñγα︸ ︷︷ ︸
incompatible mode

. (39)

In (39), N A denote Lagrange polynomials,nel is the number of element nodes,qA are
nodal values,̃N is the chosen interpolation function for the incompatible mode, andα is the
corresponding degree of freedom. Incompatible mode shape functions,Ñ, are chosen that
incorporate a discontinuity. The parameterγ ∈ [0, 1] determines the relative magnitudes
of the positive and negative contributions from the discontinuity (i.e., the extent to which it
adds to or subtracts from the standard interpolation). Figure 3 provides a one-dimensional
rendering.

As in other implementations of incompatible mode interpolations (see Fenveset al.[35],
Taylor et al. [36], Simo and Rifai [37] and references in the latter), the corresponding
degrees of freedom are statically condensed out. In the present setting, this can be achieved
in closed form via the relations

[[T · n]] |0 = −ksρ|0− , ρ|0+
ρ0−
= m. (40)

In (40),ρ|0− andρ|0+ are concentrations on either side of0 andm is the so-called con-
centration segregation constant, which is specified for the problem. The derivation of (40a)
is provided in Rao and Hughes [1]. The closed-form static condensation procedure is de-
scribed in Raoet al.[2]. In closing this subsection attention is also called to an application of
partition of unity finite-element methods for modeling the displacement field around cracks
by Moës and co-workers [38], which bears relation to the incompatible modes’ method
described here.

4.1.1. A Penalty Formulation to Ensure Positive Concentrations

In certain situations, the incompatible mode interpolations have been observed to result
in negative concentrations at nodes downstream (with respect to interface velocity) of0.
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FIG. 4. Domain, boundaries, and interface for the one-dimensional diffusion problem.

Clearly, this is nonphysical. Recourse has therefore been taken in this work to a penalty
formulation to ensure positive nodal concentrations. The approach is described below.

Consider adding to the specification of the problem outlined above an inhomogeneous
diffusivity D(x):

D(x) =
{

D−: x ∈ Ä−
D+: x ∈ Ä+. (41)

Then, for the one-dimensional steady-state diffusion problem overB ⊂ R (Fig. 4), written
in strong form,

find ρ ∈ S = {ρ ∈ L2(B) | ρ = ρg on∂Bρ} (42)

and T = −D(x)
dρ

dx
in B\0, T = 0 on∂Bt , (43)

such that
d

dx
T(x) = 0 inB\0, (44)

[[T ]] |0 = −ksρ|0− , ρ|0+
ρ|0− = m. (45)

With ∂Bρ, ∂Bt , and0 now being points inR and with∂Bρ lying to the left of∂Bt , the
concentration inB+ is constant and given by

ρ̄ = mD−ρg

D− − ksh−
. (46)

In the above expression,h− = m(B−) is the length ofB−. In the convention adopted
for this work, the reaction constantks is a negative number; accordingly, ¯ρ is always
nonnegative. It is this property of the one-dimensional solution that we seek to enforce on
the multidimensional problem in its discrete form.

A quadratic penalty function is constructed:

χ(ρg, ρ̄) := 1

2
K

(
mD−ρg

D− − ksh−
− ρ̄

)2

. (47)

Here,K is the penalty parameter, andρg andρ̄ are the concentrations at suitably chosen
pointsxg ∈ Ä− andx̄ ∈ Ä+, respectively. The length parameterh− is the distance of point
xg from 0.

The modification to the weak form is obtained by considering variationsρg + εwg and
ρ̄ + εw̄ and finding the stationary point of the penalty function:

d

dε

{
1

2
K

(
mD−(ρg + εwg)

D− − ksh−
− (ρ̄ + εw̄)

)2}∣∣∣∣
ε=0

= 0,

⇒
(

mD−wg

D− − ksh−
− w̄

)
K

(
mD−ρg

D− − ksh−
− ρ̄

)
= 0. (48)
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The above procedure can be generalized by starting with a penalty functionχ(ρg, ρ̄) (using
the same symbol,χ , in an abuse of notation) defined for vectorsρg = 〈ρg1, ρg2, . . . , ρgp〉T ,
ρ̄ = 〈ρ̄1, ρ̄2, . . . , ρ̄ p〉T as

χ(ρg, ρ̄) =
p∑

i=1

1

2
Ki

(
mD−ρgi

D− − ksh
−
i

− ρ̄ i

)2

. (49)

In the present setting, the penalty function in (49) can be regarded as enforcing the desired
constraint between each pair in the set{(ρg1, ρ̄1), (ρg2, ρ̄2), . . . , (ρgp, ρ̄ p)}. The condition
for the stationary point of this extended penalty function is

p∑
i=1

(
mD−wgi

D− − ksh
−
i

− w̄i

)
Ki

(
mD−ρgi

D− − ksh
−
i

− ρ̄ i

)
= 0. (50)

Equation (50) is added to (12) to yield the penalized weak form

∫
Ä\0
∇w · T dV −

∫
0

w[[T · n]] ds+
i=p∑
i=1

(
mD−wgi

D− − ksh
−
i

− w̄i

)
Ki

(
mD−ρgi

D− − ksh
−
i

− ρ̄ i

)

= −
∫
Ä

f dV +
∫
∂Ät

t ds. (51)

Consider the setN0t = {ne | 0t ∩Äne 6= ∅} containing the numbers of those elements
which are intersected by0t . The pointsxgi andx̄i (with concentrationsρgi andρ̄ i ) are most
conveniently chosen to each lie in an elemente∈ N0. The finite-dimensional version of
(51) is simply written as∫

Ä\0
∇wh · Th dV −

∫
0

wh[[Th · n]] ds+
∑
e∈N0

(
mD−wh

ge

D− − ksh−e
− w̄h

e

)

× Ke

(
mD−ρh

ge

D− − ksh−e
− ρ̄h

e

)
=
∫
Ä

wh f dV +
∫
∂Äh

wh h̄ ds. (52)

In (52), Ke are penalty parameters which are free to be chosen differently for each ele-
ment. The choice of pointsxge and x̄e is best explained using Fig. 5 for the two possible
configurations which depend on the orientation of a triangular element with respect ton.

The cases depicted correspond to situations in which the isolated node,i , lies inÄ−

(Fig. 5a) and conversely (Fig. 5b). In Fig. 5a,xge = xi andρh
g = qi , x̄e = (x j + xk)/2,

FIG. 5. Possible orientations of the triangle with respect ton.
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and ρ̄h = (q j + qk)/2, where theqs are nodal concentration values. In Fig. 5b,xge =
(x j + xk)/2 andρh

g = (q j + qk)/2, x̄e = xi , and ρ̄h = qi . The same rule is applied in
selecting the weighting function valueswh

g andw̄h.
The penalty formulation presented above is found to be effective in preventing negative

concentration values. Numerical examples are provided in Section 5.

4.2. Algorithmic Implementation of the Level-Set Formulation

The level-set equation (5) is cast in weak form as follows. Findφ(x, t) ∈ H1(Ä) such
that∀ϑ(x) ∈ H1(Ä), andφ(x, 0) = φ0(x),∫

Ä

ϑ
∂φ

∂t
dV +

∫
Ä

ϑvN‖∇φ‖ dV = 0, (53)

whereϑ is the weighting function. On discretizing, for instance, using linear finite-element
interpolations and a semidiscrete time integration scheme, the matrix problem that results
is

M(φn+1− φn)+1t Rh
n+α = 0, (54)

φ(0) = φ0, (55)

whereφ is the vector of nodal values ofφ, M is the finite-element mass matrix,(d)n denotes
the algorithmic approximation to the corresponding quantity at the time instanttn, 1t is
the time increment, and the static residualRh arises from the second integral in (53). The
generalized midpoint family of algorithms is implied in the numerical integration formula of
(54), andα ∈ [0, 1]. As usual, the superscript(d)h indicates that the corresponding quantities
are arrived at via a finite-dimensional approximation. Observe that the static residual is a
nonlinear function ofφh. In general, this requires the application of an iterative procedure
for the solution of (55). However, a particularly simple form results by selecting the forward
Euler algorithm (α = 0). Recalling that for the solution at timetn+1, this algorithm involves
the evaluation ofRh at tn, it follows that vN

n and‖∇φn‖ must be used in (53). With a
diagonalized mass matrix, this algorithm is an especially fast scheme, since neither does the
mass matrixM need inversion nor is an iterative scheme implemented. Stability restrictions
do impose an upper bound on1t , as is well-known.

The velocity projection scheme introduced in Section 2.2 provides the interface velocity
in elements not containing0. In Fig. 6,n is such an element. The algorithm for determining
the normal velocity is based upon a dynamically updated setN0n+1 (n+ 1 is the discrete
representation of the subscriptt , for time), as follows.

Time tn+1, element m, quadrature point yk

IF (φh
n+1(yk) = 0) THEN (m ∈ N0n+1)

vN = − [[Tox · n]]
[[ρox]]

ELSE(m /∈ N0n+1)

1. Find xL (quadrature point of ne) such that

‖xL − yk‖ = min
ne∈N0n+1

min
l∈{1,...,l int}

‖xl − yk‖
2. Set vN |m,yk

= vN |ne,xL

ENDIF
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FIG. 6. Velocity projection scheme for elementn using the set of elementsN0 (shaded elements).

In practice, the use of linear finite-element interpolations requires a single quadrature point
in each element, simplifying and speeding up the algorithm. Within each element, the above
search is ofO(m[N0]), wherem[N0] is the number of elements inN0.

4.2.1. Spatial Stabilization

The level-set formalism yields a nonlinear advection equation which demonstrates spatial
oscillations since the element Peclet number is infinite in the absence of a diffusive term.
The Galerkin least squares approach of Hughes and co-workers [39–43] has been employed
by Raoet al. [2] to stabilize this equation. This involves the modification of the weak form
(53) to yield a stabilized weak form:∫

Ä

ϑ
∂φ

∂t
dV +

∫
Ä

ϑvN‖∇φ‖ dV + τ
∫
Ä

vN ∇φ
‖∇φ‖∇ϑ

(
∂φ

∂t
+ vN‖∇φ‖

)
dV︸ ︷︷ ︸

stabilizing term

= 0. (56)

The parameterτ is the so-called stabilization parameter whose choice is not a trivial task.
The success of stabilization schemes of this form hinges on the value used forτ . Raoet al.
[2] base their calculation ofτ upon the analysis in Hugheset al. [42]. However, this choice
fails to eliminate oscillations in the solution for certain extreme cases. For the present work
the choice ofτ is based upon the work of Brezzi and Russo [44] and Hughes [45] and
produces oscillation-free behavior for the range of problems considered.

The level-set method has been applied to track-moving interfaces in a number of situa-
tions. For a recent application also involving a combination of the level-set method with finite
element techniques for crack propagation, see the work of Stolarska and co-workers [46].

4.3. Enhanced Strain Formulation for Inhomogeneous Expansion

The computational efficiency afforded by level-set methods requires the enrichment of
interpolation techniques at the element-level. This has been described in the context of
the diffusion-reaction problem in Section 4.1. Similarly, the intersection of an element by
the interface requires special considerations with regard to numerical implementation of
the mechanics of the problem. The interface,0, introduces material inhomogeneity at the
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element-level by separating the element into Si and SiO2 parts. Recall (Section 3.2) that the
SiO2-part of such an element undergoes an instantaneous inelastic volume expansion,2i

ox,
and one at a finite rate,2i

a. The part of the element that is silicon, however, has a purely
elastic volume expansion. The kinematic basis of the element therefore needs enrichment
to accurately represent this inhomogeneous expansion. In the present work, the enhanced
strain method pioneered by Simo and co-workers [37, 47, 48] (see Glaser & Armero [49]
for recent results) has been adopted for this purpose. The use of this framework to describe
strongly inhomogeneous strains is based upon the approach in Armero & Garikipati [50].

An enhanced deformation gradient is introduced as follows:

F = ∂ϕ

∂X︸︷︷︸
F̂

+ H̃︸︷︷︸
enhancement

. (57)

The standard definition for the deformation gradient is the first term on the right-hand
side in (57), which is now rewritten to distinguish it from the corresponding enhanced
quantity,F. The second term,̃H , is the enhancement to the standard displacement gradient,
∂u/∂X, introduced in (14b). The above additive decomposition leads to a multiplicative
decomposition of the deformation gradient, written as

F = (1+ H̃F̂−1)︸ ︷︷ ︸
f̃

F̂. (58)

In the theory of enhanced strain methods, the above decomposition is introduced by way
of a three-field Hu–Washizu variational formulation. The fieldsu, H̃, andP (the nominal
stress tensor introduced in Section 3.1) are each defined onǞ ⊂ R3 and belong to spaces

u ∈ U := {u : Ǟ 7→ R3 | u ∈ H1(Ä), u = ug on ∂Äu}, (59)

H̃, P ∈ L := {A : Ǟ 7→ GL(3) | A ∈ L2(Ä)}, (60)

whereGL(3) is the space of 3× 3 matrices introduced in Section 3.1. A suitably defined
potential energy functional is introduced,5: U × L × L 7→ R, whose stationary point is
found with respect to variations (δu, δH̃, δP). Standard calculus of variations, supple-
mented by the requirement thatH̃ beL2-orthogonal toP, give rise to the following pair of
equations, which constitute the weak form corresponding to the enhanced strain method:∫

Ä

Grad[δu] : PdV =
∫
Ä

δu · f dV +
∫
∂Ät

δu · t dS, (61a)∫
Ä

δH̃ : PdV = 0. (61b)

Additionally, in a finite-element setting, the relatively weak requirement that the enhanced
displacement gradient,̃H, and nominal stress,P, lie in L2(Ä) allows H̃h to be defined
discontinuously across element boundaries. Then, (61b) can be written [now using finite-
dimensional fields denoted(d)h] as

nel∑
e=1

∫
Äe

δH̃h : Ph dV = 0. (62)

Equation (62) allows the local elimination ofH̃ via static condensation.



MODELS FOR THERMAL OXIDATION OF SILICON 155

Equation (62) also gives rise to a consistency condition on imposing the requirement that
the method be capable of representing stress fields that are constant overÄe. The condition
is posed in terms of the volume integral ofδH̃ overÄe:∫

Äe

δH̃h dV = 0. (63)

In discrete form,H̃ andδH̃ are expressed as local, element-level interpolations of scalar
parameters,β andζ , respectively.

H̃h(X) = βG(X), δH̃h(X) = ζG(X), (64)

whereG(X) is a suitably defined interpolation function. Substituting (64) in (63) leads to

∫
Äe

G(X) dV = 0. (65)

Simo and Armero [47] observe that (63) is closely related to satisfaction of the classical
patch test of Tayloret al. [51]. In the case being pursued here, the construction ofG(X)
is based upon the idea that the corresponding enhancement to the deformation gradient,
f̃ h= 1+ H̃F̂h−1 = 1+ βGF̂h−1 [see (58)], must be isotropic. Further,uh is interpolated
linearly overÄe, renderingF̂h a constant, andG(X) is chosen to be piecewise constant in
Ä−e andÄ+e . This allowsG(X) to be written as

G(X) =
{

1
l− F̂h: X ∈ Ä−e
1
l+ F̂h: X ∈ Ä+e

, (66)

where one of the lengthsl−, l+ must be arbitrarily chosen. Equation (65) leads to the
relation

l+ = −l−
m(Ä+e )
m(Ä−e )

. (67)

Finally, l− is arbitrarily chosen equal to the element diameterhe.

Remark 4.2. On recalling the volumetric-deviatoric decomposition onF in Sections 3.1
and 3.2, it is clear that the enhancement introduced in (58) is easily incorporated in the
framework of the previous sections. In particular, the following relations hold:

F̂ = (det[F̂])1/3F̄, f̃ = (det[ f̃ ])1/31, (68)

J = 2 = 2e2i = det[ f̃ ]det[F̂]. (69)

Section 5 contains numerical examples that demonstrate the good performance of this ren-
dering of the enhanced strain method in resolving highly inhomogeneous volume
strains.
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4.4. Staggered Solution of Coupled Problems

The methods described above are combined in the following staggered algorithm:

At time tn+1, given the solution attn (i.e., {ρn,Tn, φn, v
N
n , un,Fn,2

i
ox,n,2

i
a,n,Qn,σn}

are known).

1. Determine Si and SiO2 regions on the basis ofφn.
2. Solve the diffusion-reaction problem (52) usingσn to calculate stress-dependent

D± andks to giveρn+1 and Tn+1 inÄ\0 and hence calculatevN
n+1 employing the velocity

projection algorithm described in Section 4.2.
3. With vN

n , solve the level-set evolution problem employing the methods described
in Section 4.2 to obtainφn+1.

4. Determine Si and SiO2 regions on the basis ofφn+1.
5. Solve the mechanics problem employing constitutive integration rules in (20), (26),

and (28a) to obtainun+1,Fn+1,2
i
ox,n+1,2

i
a,n+1,Qn+1,σn+1.

6. Settn = tn+1, tn+1 = tn+1+1t . Go to 1.

The definitions of Si and SiO2 regions for the diffusion-reaction problem are based upon
φn and are unchanged over the time step [tn, tn+1]. The stress-dependence ofD andks for the
diffusion-reaction problem are determined fromσn. Accordingly, these values are constant
over [tn, tn+1]. It follows that the solution of the diffusion-reaction problem is obtained with
a single iteration for the time step. With the forward Euler algorithm, the solution of the
level-set problem is entirely dependent on the interface normal velocity,vN

n , determined
at the end of the previous time step,tn. Thus, the definition of Si and SiO2 regions as
determined by solving the level-set problem over the current time step [tn, tn+1] is obtained
with a single iteration. Finally, the solution of the mechanics problem is nonlinear and uses
φn+1 (updated by the most recent solution of the level-set equation) to determine silicon and
SiO2 regions. On the basis of these updates, it is clear that a second pass through steps 1–5
leaves the solution of each problem unchanged. It follows that the above staggered scheme
converges in a single pass.

5. NUMERICAL EXAMPLES

The models developed in preceding sections are demonstrated by way of numerical
examples applied to a range of intial and boundary value problems. Modeling advances
pertaining to a particular phenomenon (i.e., diffusion-reaction), the level-set formulation,
and mechanics are first presented in isolation on simple academic problems. Finally they are
combined in the numerical solution of a process sequence in semiconductor manufacture.

5.1. Penalty Formulation of Discontinuous Concentration

5.1.1. One-Dimensional Diffusion-Reaction

We first consider an effectively one-dimensional diffusion-reaction problem incorporat-
ing a discontinuity at the Si-SiO2 interface. The problem domain and boundary condi-
tions appear in Fig. 7. The diffusion-reaction problem is decoupled from mechanics in this
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FIG. 7. Problem definition for one-dimensional diffusion-reaction;ρg = 5× 1016 cm−3.

example. The position of the interface,0, is also taken to be fixed (i.e., the level set does not
evolve). Accordingly, a linear, time-independent problem is to be solved. Material properties
and temperature appear in Table I.

Figure 8 shows the concentration field obtained. The sharp contours correspond to the
position of the interface and result from smoothing of a discontinuous field in the contour
plot. The actual field is discontinuous and the discontinuity lies within the fourth row of
elements from the upper surface. The solution obtained agrees with the exact solution
outlined in Section 4.1.1 (Eq. 46). In this case the penalty formulation was not employed.
The incompatible mode formulation for discontinuous concentration reproduces the exact
solution in this one-dimensional setting.

5.1.2. Diffusion-Reaction Incorporating the Penalty Formulation

The need for a method enforcing positive concentration and the effectiveness of the
proposed penalty formulation is demonstrated in this subsection. The domain and boundary
conditions appear in Fig. 9. The presence of a sharp corner in the interface appears to induce
negative concentrations in the solution.

As with the previous problem, diffusion-reaction was treated and decoupled from the
mechanics and interface motion. Material properties used and the temperature were iden-
tical to the one-dimensional boundary value problem. Figure 10 shows the position of the
interface on the finite-element mesh. Figures 11 and 12 show the results obtained without
and with the penalty formulation, respectively. The nonphysical negative concentration in
Ä+ near the interface corner seen in Fig. 11 does not appear when a penalty parameter
K = 103 (dimensions of s−1 is used (see Section 4.1.1).

TABLE I

Properties for One-Dimensional

Diffusion-Reaction

Property Value

D0ox 5.0234× 10−7 cm2/s
D0Si 5.0234× 10−9 cm2/s
ks0 −4.5391× 10−3 cm/s
T 1323 K
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FIG. 8. Contours of oxidant concentration (×1016 cm−3) showing a discontinuity at0.

5.2. Interface Evolution with Velocity Projection and Stabilization

The next pair of examples demonstrate the working of the velocity projection algorithm
and the effect of the stabilization parameter used for this work.

The example of Section 5.1.2 is rerun with interface evolution (i.e., the level-set evo-
lution equation is also solved). However, the mechanical problem is still left out. The
diffusion-reaction and level-set problems are solved in a staggered fashion (see Section 4.4).
Figure 13 shows the initial position of the interface.

Figures 14 and 15 correspond to time instantst = 480 s andt = 1200 s, respectively.
Observe the uniform spacing of level-set contours. The velocity projection scheme works

FIG. 9. Problem definition for diffusion-reaction incorporating a corner;ρg = 5× 1016 cm−3.
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FIG. 10. Location of the interface,0.

to ensure that at all points on a given line perpendicular to0t , the level-set contours have
the same normal velocity.

It is worth observing that the level-set field is smooth and devoid of oscillations with the
chosen stabilization (Section 4.2.1).

FIG. 11. Appearance of negative concentration (contours are values×1016 cm−3) at the interface corner.
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FIG. 12. Concentration remains positive with penalty formulation (contours are values×1016 cm−3).

5.3. Two-Element Test for Inhomogeneous Expansion

This example demonstrates the enhanced strain formulation for inhomogeneous expan-
sion. An initially square domain is chosen. Figure 16 depicts the problem domain. In this
case, the mechanical problem alone needs to be considered. The position of0 is given and

FIG. 13. Initial position of the interface,00.
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FIG. 14. Level-set contours,φ, att = 480 s. The zero level-set contour is not explicitly shown, but its position
can be interpolated and lies in the first band from the trench wall.

it separates the domain intoÄ− (SiO2) andÄ+ (Si). It is assumed that at timet = 0−, the
interface lay outside the domain shown. It follows that with the appearance of0 in the
position shown in Fig. 16, points inÄ− experience an instantaneous expansion2i

ox = 2.2.
The compressible Neo–Hookean stored energy function (Section 3.1) is employed for both

FIG. 15. Level-set contours,φ, at t = 1200 s. The zero level-set contour is not explicitly shown, but its
position can be interpolated and lies in the second band from the trench wall.
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FIG. 16. Domain with inhomogeneous materials:Ä− : SiO2, Ä
+ : Si.

Si and SiO2. In the case of SiO2, the stored energy function is modified, as discussed in
Section 3.1, to incorporate the standard solid viscoelastic model. The relevant material pro-
perties and problem parameters appear in Table II. A relatively low temperature is chosen at
which SiO2 does not demonstrate significant viscoelastic behavior (i.e., it can be treated as
a purely hyperelastic material) (see Garikipatiet al. [24]). Additionally, at this temperature
the rate of inelastic volume expansion,2̇i

a, is negligible. Hence we have,2i ≈ 2i
ox.

A mesh composed of two triangular elements is used. Figures 17 and 18 show the initial
(t = 0−) and final (t = 0+) configurations. The large strains involved are apparent. The en-
hanced strain formulation discussed in Section 4.3 works well in resolving the significantly
differing volume strains inÄ−e andÄ+e for each element (e= 1, 2). The total and inelastic
volume strains in each subdomain of the elements are listed in Table III.

Next, in order to demonstrate the gradual inelastic volume change during annealing, the
above problem is run at a higher temperature,T = 1323 K. At this temperature, the rate2i

a

is significant [see (28a)]. The result appears in Fig. 19, where in addition to the instantaneous
expansion2i

ox at t = 0, expansion related to annealing,2i
a, is also seen. Note, that at this

temperature, SiO2 displays viscoelastic behavior. The corresponding material properties
appear in Table IV. The final volume changes are presented in Table V.

5.4. Fully Coupled Problem Applied to a Process Sequence

The final example is a numerical solution of two steps out of a typical sequence (involving
10 or more steps) employed in shallow-trench isolation processes. The interested reader is
directed to Garikipatiet al. [24] for a numerical solution of the full process sequence of

TABLE II

Material Properties and Parameters for the

Inhomogeneous Expansion Example atT = 973 K

Property Value

κox 35.147 GPa
µox 30.905 GPa
κSi 141.67 GPa
µSi 73.047 GPa
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TABLE III

Total and Inelastic Volume Expansion Ratios

at T = 973 K

Subdomain 2 2i
ox

Ä+1 1.02 1.0
Ä−1 1.64 2.2
Ä+2 0.989 1.0
Ä−2 1.40 2.2

FIG. 17. Initial configuration of two-element mesh,t = 0−.

FIG. 18. Expanded configuration att = 0+.
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FIG. 19. Expanded configuration att = 1.2× 104 s.

shallow-trench isolation. Here, the steps considered are (i) thermal oxidation of a trench
wall, and (ii) densification following filler deposition.

Figure 20 shows the initial-boundary value problem for the thermal oxidation step. The
Si–SiO2 interface is initially located at a distance of 9Å from the trench wall and approx-
imately 150Å below the nitride mask. Figure 21 shows the materials at the start of the
oxidation step. The region shown is one-half of a trench structure—itself part of an array
of identical trenches. A solution is sought by invoking symmetry boundary conditions on
the right- and left-hand boundaries.

The oxidation is carried out at 1373 K and proceeds as follows. (i) Oxidant diffuses
through the thin layer of preexisting SiO2 and reacts at the interface. This leads to the
discontinuity in O2 concentration, the resolution of which is demonstrated in Sections 5.1.1
and 5.1.2. (ii) The formation of native oxide implies movement of the interface into the
silicon subdomain (denotedÄ+). This is achieved by movement of the zero level-set contour

TABLE IV

Material Properties and Parameters for the

Inhomogeneous Expansion Example atT = 1323 K

Property Value

κox 12.457 GPa
µox 103.82 GPa
γ 0.96959
τ 285.93 s
κSi 141.67 GPa
µSi 73.047 GPa



TABLE V

Total and Inelastic Volume Expansion Ratios atT = 1323 K

Subdomain 2, t = 0+ 2i
ox at t = 0+ 2, t = 1.2× 104 s 2i

ox, t = 1.2× 104 s 2i
a, t = 1.2× 104 s

Ä+1 1.02 1.0 1.02 1.0 1.0
Ä−1 1.19 2.2 1.92 2.2 1.0113
Ä+2 1.0 1.0 0.999 1.0 1.0
Ä−2 1.12 2.2 1.44 2.2 1.0113

FIG. 20. Problem domain for oxidation of trench wall;ρg = 5× 1016 cm−3.

FIG. 21. Materials at the beginning of thermal oxidation of the trench wall: the nitride mask (light gray),
silicon substrate (dark gray), and oxide (one-element wide strip of intermediate shade between light and dark gray
regions).

FIG. 22. Materials at the end of thermal oxidation of the trench wall: the nitride mask (light gray), silicon
substrate (dark gray), and oxide (light gray region at the trench surface extending to a one-element wide strip
between nitride mask and silicon substrate).

FIG. 23. Pressure contours (dyn-cm−2) at the end of thermal oxidation.
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TABLE VI

Material Properties at 1373 K

Property Value

κox 12.158 GPa
µox 40.921 GPa
γ1ox 0.9697
τox 132.49 s
κnit 88.067 GPa
µnit 61.415 GPa
γ1nit 0.9697
τnit 2926.9 s
κSi 141.67 GPa
µSi 73.047 GPa
D0ox 1.3786× 10−6 cm2/s
ks0 −7.8752× 10−3 cm/s
D0nit 1.0× 10−14 cm2/s
D0Si 1.3786× 10−8 cm2/s
αox 5.5× 10−7

αnit 1.0× 10−6

αSi 3.0× 10−6

(Section 5.2). (iii) The newly formed SiO2 instantaneously expands by a ratio2i
ox, while

the preexisting SiO2 continues to expand to a ratio2i
a. The quasistatic stress-equilibrium

problem is solved. The solution proceeds as described in Section 4.4.
Figure 22 shows the different materials at the end of 360 s. The lining of oxide on the trench

wall has grown. The nitride (Si3N4) serves as a mask against diffusion of oxidant, thereby
preventing further oxidation of the silicon just below it. The standard solid viscoelastic
model has been employed for the nitride as well. All material properties at this temperature
appear in Table VI. In this step of the shallow-trench isolation sequence the oxide lining on
the trench wall is grown in preparation for the next step, wherein oxide will be deposited
in the trench. The oxide serves to isolate active silicon regions in the structure from each
other. The growth of oxide, which expands, leads to generation of large stresses due to the
associated inelastic strain2i

ox. Additionally, there are stresses associated with the mismatch
of thermal expansion coefficients (denotedαox, αnit, andαSi in Table VI) between dissimilar
materials. Figure 23 shows the pressure in terms of the Cauchy stress,p = (1/3)σ : 1. Stress
concentrations are seen under the tip of the nitride mask in the trench’s upper corner. These
results correspond well with experimental measurements of stress in the silicon obtained
from micro-Raman spectroscopy (see Garikipatiet al. [24]).

FIG. 24. Materials at the end of annealing following filling of the trench: the nitride mask (light gray region
at the top left), silicon substrate (bottom dark gray region), deposited oxide (light gray region at top right), and
thermally-grown oxide (light gray region separating the silicon substrate from nitride mask and deposited oxide).
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FIG. 25. Pressure contours (dyn-cm−2) at the end of the annealing stage.

In the actual process, the next step involves deposition of tetraethoxysilane (TEOS) in
the trench. Reactions take place leading to the formation of SiO2. The filling of the trench is
modeled by activating the finite-element mesh in the trench region (this portion of the mesh
was deactivated for the previous step) and ascribing properties of SiO2 to it. We consider
an isothermal annealing of the structure at 1073 K leading to an inelastic volume expansion
2i

a of SiO2 formed by either thermal oxidation or deposition (Section 3.2). The process
flow involves annealing in an inert ambient. Accordingly, the concentrations remain fixed at
the values attained at the end of oxidation and the interface does not evolve. The staggered
solution of the fully coupled problem can hence be abandoned and the mechanical problem
alone needs to be solved. Figure 24 shows the materials corresponding to this stage and
Fig. 25 is a plot of the pressure,p, at the end of 300 s of annealing. The inelastic expansion
of SiO2 in the trench and trench wall lead to compressive stress in the silicon substrate. This
result also corresponds well with the micro-Raman spectroscopy measurements referred to
above.

6. CONCLUSION

The mathematical, mechanical, and numerical models described in Rao and Hughes [1]
and Raoet al. [2] represent important advances over the preexisting state of thermal oxi-
dation models. However, as pointed out in Section 1, several improvements were possible.
These have been discussed at length in the present work. In the case of the level-set method
for interface movement these included the development of a velocity projection scheme
and application of recent spatial stabilization methods. The diffusion-reaction equation
benefited from an imposition of the positivity constraint for concentration in the presence
of discontinuities. These are largely implementational and numerical issues. However, the
mechanics has been enhanced by the introduction of an additional phenomenological model
for annealing-induced oxide expansion. The expansion-related changes have been formu-
lated in an inelastic setting and the accompanying irreversible thermodynamics has been
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elucidated. Explicit evolution equations for the components of inelastic volumetric strains
have been stated. This provides a greater measure of rigor to the mechanics. Inhomogeneous
expansion of elements that contain the interface and hence are part silicon and part SiO2 is
made possible in the framework of the enhanced strain finite-element method. This makes
the solution of the mechanics problem more robust.

Some additional experimental data is currently being sought on viscoelastic properties
of various types of SiO2 films and the annealing-induced expansion. These are discussed
by Garikipatiet al. [24]. The formulation of the fully coupled thermomechanical problem
is relevant to the accurate modeling of the high thermal heating rates used in semiconductor
manufacturing processes. This and the extension of the models to three dimensions are
important steps that will form the subject of future publications.
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